SASKATCHEWAN WATER CORPORATION

GEOLOGY OF THE MAIN CANALS IN THE OUTLOOK AREA

REPORT 0101-001 26/10/84
October 26, 1984

Saskatchewan Water Corporation
Box 699
OUTLOOK, Saskatchewan
SOL 2N0

Attention: Mr. Lloyd Barteski

Dear Mr. Barteski:

Enclosed are five copies of Report 0101-001 on the "Geology of the main canals in the Outlook area", as requested by Dr. W.A. Meneley. The report was critically read by Dr. Meneley and his suggested additions and changes have been included. Dr. Meneley wishes to have a copy of the report which I thought should come from you rather than directly from me.

I found the investigation both interesting and informative and look forward to working with you again sometime.

Sincerely yours,

E.A. Christiansen
SUMMARY

The base of exploration for geological framework investigations is the Lea Park Formation, whereas the base of exploration for canal seepage studies ranges from 20 to 60 feet below the present surface. This shallower base of exploration is in silt and clay beneath the upper sand of the Judith River Formation, in the Bearpaw Formation under the Saskatoon Group, and in the Sutherland Group.

Seepage from canals may occur through bedrock sands, deltaic sands, intertill and intratill sands and gravels, and through joints. Comminution of jointed till or bedrock by glacial thrusting may provide permeability barriers to canal seepage.

In studying canal seepage, it is recommended to drill at least one test hole to the base of exploration as defined above and in the cross sections. This information may permit the investigator to raise the base of exploration for the remainder of the study.
1. INTRODUCTION
 1.1 Terms of Reference and Objective 1
 1.2 Location 2
 1.3 Previous Work 2
 1.4 Present Study 4
 1.5 Acknowledgements 5

2. GEOLOGY
 2.1 Introduction 5
 2.2 Lea Park Formation 5
 2.3 Judith River Formation 7
 2.4 Bearpaw Formation 9
 2.5 Empress Group 9
 2.6 Sutherland Group 9
 2.7 Saskatoon Group 11
 2.8 Surficial Stratified Drift 12

3. GEOLOGICAL PROCESSES
 3.1 Introduction 13
 3.2 Collapse 13
 3.3 Glacial Thrusting 15
 3.4 Regressive Offlap and Transgressive Onlap 18
4. GEOLOGICAL HISTORY
 4.1 Cretaceous Period
 4.2 Tertiary Period
 4.3 Quaternary Period

5. SEEPAGE MODELS
 5.1 Introduction
 5.2 Bedrock Sands
 5.3 Deltaic Sands
 5.4 Intertill and Intratill Sands and Gravels
 5.5 Joints

6. LITERATURE CITED

Illustrations

Drawing Page
0101-001-01. Information sheet in back
0101-001-02. Cross section A-A' in back
0101-001-03. Cross section B-B' in back
0101-001-04. Cross section C-C' in back
0101-001-05. Cross section D-D' in back
0101-001-06. Cross section E-E' in back

Figure
1. Location of Outlook area 3
2. Correlation charts 6
3. Schematic cross section 8
4. Seismic cross section 14
5. Thickness of Devonian Prairie Evaporite salt 16
6. Schematic diagram 17
7. History of deglaciation about 14,000 years ago 22
8. History of deglaciation about 12,500 years ago 23
9. History of deglaciation about 12,000 years ago 24

Appendices

Appendix
1. Index of Geological Logs 32
2. Geological Logs 33
3. Total Carbonate Analyses 60
4. Mechanical Analyses 62
1. INTRODUCTION

1.1 Terms of Reference and Objective

E. A. Christiansen Consulting Ltd. was commissioned by the Saskatchewan Water Corporation (SWC) to provide geological information along WMI, MI, and SSEWS canals which would serve as a stratigraphic framework for detailed investigations of the seepage areas along the canals. During the test drilling program, two additional test holes were requested north of Outlook to provide the geological framework for salinity problems.

More specifically E. A. Christiansen Consulting Ltd. was commissioned to:

1. approve the location of all test holes and supervise the drilling, sampling, sample descriptions, electrical logging, and abandonment of each test hole;
2. compile geological and other relevant information on the original electric logs;
3. compile longitudinal and cross sections for each canal studied;
4. supervise auger test drilling;
5. train SWC staff to carry out rotary drilling and augering programs.
1.2 Location

The locations of the WMI, MI, and SSEWS canals are shown in Drawing 0101-001-01 which is herein called the Outlook area. Longitudinal sections A-A', B-B', and D-D' and cross sections C-C' and E-E' are also shown in this drawing. The location of this drawing is shown in Figure 1.

1.3 Previous Work

The geology and hydrogeology of the proposed Conquest reservoir site was evaluated by Meneley and Christiansen (1970), and the geology and groundwater resources of the Outlook area were investigated regionally by Christiansen and Meneley (1971). The surficial geology of the study-area was investigated by Scott (1971).

In addition to these more regional studies, a "Canal leakage investigation" along the SSEWS canal between the Broderick and Brightwater reservoirs was conducted by Clifton Associates Ltd. (1983).
Figure 1. Location of Outlook area.

E.A. Christiansen Consulting Ltd.
Papers on collapse structures (Christiansen, 1967, 1971; Gendzwill and Hajnal, 1971), Pleistocene stratigraphy (Christiansen 1968 a,b), and the history of deglaciation (Christiansen, 1979) are the bases for discussions on these subjects.

1.4 Present Study

This study is based on information from the Saskatchewan Research Council, Family Farm Improvement Branch, and on 17 rotary testholes and 4 augerholes which were drilled, sampled, and electric logged for the purpose of this investigation.

Samples from the 17 testholes and 4 augerholes were described and interpreted (Appendices 1, 2). The samples were described with the aid of hydrochloric acid to test for carbonates, a Munsell Color Chart, and a hand lens. Tills were submitted for total carbonate and mechanical analyses to characterize and differentiate them (Appendices 3, 4).
1.5 Acknowledgements

Messrs. L. Barteski and C.A. Rogal assisted with the auger drilling program, and Mr. Rogal assisted with the rotary test drilling program.

2. GEOLOGY

2.1 Introduction

The bedrock and glacial deposits in ascending order include the Lea Park Formation and Upper Colorado Group, Judith River and Bearpaw Formations, and Empress, Sutherland, and Saskatoon Groups (Fig. 2).

2.2 Lea Park Formation and Upper Colorado Group

Because the Lea Park Formation cannot be differentiated from the Upper Colorado Group in electric logs, they were combined into one unit. The Lea Park Formation and Upper Colorado Group is about 1,000 feet thick in the study-area, and the upper one half is composed of gray, noncalcareous, nonmarine silt and clay which becomes
Figure 2. Correlation charts of: (A) Upper Cretaceous and Tertiary formations in southern Saskatchewan and adjacent areas. From Whitaker et al. (1978) and (B) Quaternary deposits.
slightly sandy as the overlying Judith River Formation is approached. The top of the Lea Park Formation and Upper Colorado Group was the base of exploration for the geological investigation in the study-area.

2.3 Judith River Formation

The Judith River Formation is composed of 150-190 feet of gray, noncalcareous, carbonaceous sand, silt, and clay with thin coal seams (Drawings 0101-001-02-06). In Testhole 17 (Drawings 0101-001-01,05), the Judith River Formation was penetrated by the canal. In testhole 8 (Drawings 0101-001-01,03), on the other hand, the top of the Judith River Formation is 950 feet below the present surface.

Testholes 16, 17 and 21 in the vicinity of Section 18, Township 30, Range 5 (Drawing 0101-001-01) show that the Judith River Formation dips about 150 feet per mile to the SSW or about 2 degrees. This explains the presence of Bearpaw "shale" beneath drift at testhole 16 and the disappearance of the Judith River "sandstone" north of testhole 17.

The Judith River Formation is a nonmarine, deltaic deposit which extends eastward into marine sediments (Fig.3).
Figure 3. Schematic cross section of intertonging nonmarine sand and silt and marine silt and clay in the Canadian Great Plains. From McLean (1971).
2.4 Bearpaw Formation

The Bearpaw Formation is composed of gray, noncalcareous, marine silt and clay with a 50-foot marine sand bed believed to be the Ard kenneth Member (Drawings 0101-001-02 03, 05). The Bearpaw Formation is preserved only in down-faulted blocks where it escaped both fluvial and glacial erosion.

2.5 Empress Group

The Empress Group, which was named by Whitaker and Christiansen (1972), is composed of gravel, sand, silt, and till lying between bedrock and till (Drawings 0101-001-02, 03, 04, 06). Chert and quartzite gravel in testhole 9 (Drawing 0101-001-03) suggests a preglacial valley, whereas the abundance of granite gravel in testhole 19 (Drawing 0101-001-06) suggests a glacial valley.

2.6 Sutherland Group

The Sutherland Group, which was named by Christiansen (1968a), has a lower electrical resistance and a lower carbonate and higher clay content than the Saskatoon
Group. The mean carbonate content of tills in the Sutherland Group is 15.5 ± 3.8 mL CO$_2$ per gram, whereas the overlying tills of the Saskatoon Group have a mean carbonate content of 20.6 ± 5.2 mL CO$_2$ per gram (Appendix 3). The more clayey Sutherland Group tills have a mean sand, silt, and clay content of $37 \pm 2\%$, $32 \pm 3\%$, and $31 \pm 2\%$, whereas the Saskatoon Group has a mean sand, silt, and clay content of $53 \pm 5\%$, $26 \pm 2\%$, and $21 \pm 5\%$ on an untreated basis (Appendix 4). The contact between the Sutherland and Saskatoon Group is distinct where the upper part of the Sutherland Group is weathered. This weathering zone is commonly olive in color and contains joints with yellowish-brown staining and gypsum veinlets.

The Sutherland Group is composed of Lower, Middle, and Upper tills (Drawing 0101-001-02,03). The mean carbonate contents of the Lower, Middle, and Upper tills are 14.6 ± 4.1, 17.5 ± 2.6, and 11.8 ± 2.9 mL CO$_2$ per gram (Appendix 3). Sample descriptions suggest that the Middle till is more sandy than the Lower and Upper tills. Recent, unpublished work has shown that the Upper till is a separate stratigraphic unit rather than a "partly leached" zone as described by Christiansen (1968a).
2.7 Saskatoon Group

The Saskatoon Group, which was named by Christiansen (1968a), is composed in ascending order at Floral, (Christiansen, 1968a) and Battleford formations (Christiansen, 1968b) and Surficial Stratified Drift. The scale of the cross sections (Drawings 0101-001-02-06), for the most part, does not permit separation of these units.

The Floral Formation is composed mainly of till, sand, and silt. The upper part of the formation is commonly weathered to grayish-brown color with yellowish-brown iron oxide and black manganese oxide stainings on well-developed joint surfaces.

The Battleford Formation, which is commonly less than 10 feet thick, is composed mainly of soft, unjointed, and unstained till. In some localities, the formation is composed also of a harder, lower till which commonly contains comminuted weathered till from the underlying Floral Formation. Commonly only the upper softer till, which is generally 5 to 10 feet thick, represents the Battleford Formation. The harder, lower till is interpreted as a "lodgment till", whereas the softer, upper till is considered to be an "ablation till" released during the melting of the glacier.
The upper contact with the overlying Surficial Stratified Drift is commonly gradational with a mixed zone of till and stratified drift separating the two units.

2.8 **Surficial Stratified Drift**

Most of the Surficial Stratified Drift in the study-area is glacio-lacustrine, eolian, and alluvial in origin. The glacial lake sediments grade from a lower lacustrine silt and clay unit to an upper deltaic sand and silt (Drawing 0101-001-06). The fining downward in texture suggests these sediments are inwash derived from the extraglacial South Saskatchewan River.

Eolian sand covers a buried soil developed on glacial lake deposits in testhole 20 (Drawing 0101-001-06, Appendix 2). These sands have encroached from the dune area to the east. A few feet of silty, very-fine sand covers the deltaic deposits in the vicinity of testhole 19 (Drawing 0101-001-06). These deposits are believed to be loess derived mainly from the South Saskatchewan River valley. Cliff-top eolian deposits along the top of the valley attest to the presence of eolian activity in the area.
Alluvial sand and silt have been deposited in the South Saskatchewan River valley during and since the last deglaciation. At the Outlook Bridge (Drawing 0101-001-01, testhole 24), the alluvium is composed of 118 feet of sand and silt (testhole 24, Appendices 1,2). This testhole is the basis for showing alluvium in Drawing 0101-001-06.

3. GEOLOGICAL PROCESSES

3.1 Introduction

Collapse, glacial thrusting, regressive offlap and transgressive onlap are the most important geological processes that were operative in the study-area.

3.2 Collapse

Christiansen (1967) showed that the bedrock deposits south of Saskatoon were collapsed to form the "Saskatoon Low". Christiansen (1971) demonstrated that Crater Lake lies in a collapse structure, and Gendzwill and Hajnal (1971) showed that the collapse was the result of dissolution of salt (Fig. 4). The effect of this dissolution of
Figure 4. Seismic cross section of Crater Lake structure formed by dissolution of Devonian Prairie Evaporite salt. From Gendwill and Hajnal (1971).
Devonian, Prairie Evaporite salt is shown in Figure 5. From this thickness map, it appears that the entire Devonian salt section is present at testholes 17 and 18 (Drawing 0101-001-05), for example, and appears to be entirely absent at testhole 9 (Drawing 0101-001-03). Whether the beds in the structure have continuity as shown or have been offset by gravity faulting is uncertain. Recent, unpublished work by Gendzwill (personal communication) suggests that some beds have not been offset.

3.3 Glacial Thrusting

Glacial thrusting occurred near the margin of the glacier where drift and/or bedrock were eroded from the ice-thrust depression and carried upward along diverging flowlines (Fig. 6). This glacial thrusting model explains the upward-facing, concave surfaces shown in (Drawings 0101-001-02, 03, 06). The brecciated bedrock in testhole 16 (Drawing 0101-001-05) and the fractured and slickensided bedrock in testhole 20 (Drawing 0101-001-06) are attributed to glacial thrusting.
Figure 5. Thickness of Devonian Prairie Evaporite salt. From Pearson (1963).
Figure 6. Schematic diagram showing the process of glacial thrusting. From Christiansen and Whitaker (1976).
During the augering program, comminuted Floral Formation was observed in the lodgement till of the Battleford Formation, and comminuted, oxidized bedrock was observed over jointed and stained Bearpaw Formation (test hole 16, Drawing 0101-001-05). In the latter example, this comminuted bedrock may act as a permeability barrier to seepage. These comminuted sediments are interpreted as ice-thrust deposits formed at the base of ice by glacier shearing.

3.4 Regressive Offlap and Transgressive Onlap

Where the South Saskatchewan River entered Lake Saskatchewan near Outlook, deltaic sands were deposited with finer-grained silts and clays being deposited farther north into the lake. As the glacier retreated, the lake level fell and the shoreline receded causing the delta to prograde with the receding shoreline. As the delta prograded, deltaic sands were deposited on lacustrine silts and clays forming an upward coarsening sequence by the process of regressive offlap.

If the lake level should rise in response to a glacial re-advance, and this is known to have occurred further north, the shoreline would transgress shreward, and newly
deposited deltaic sand would be laid down on previously deposited deltaic sediments. This process is called transgressive onlap which results in sediments becoming coarser grained with depth.

4. GEOLOGICAL HISTORY

4.1 Cretaceous Period

During late Cretaceous (Upper Cretaceous, Fig. 2A), the Outlook area was covered by shallow seas into which rivers from the Cordilleran emptied forming retrograding and prograding deltas as the sea levels rose and fell. The Judith River Formation represents such nonmarine, deltaic deposits, whereas the clayier Lea Park and Bearpaw Formations were deposited in shallow seas eastward beyond the deltas (Fig. 3). The marine Ardkeneth Member was formed by a prograding delta during the deposition of the Bearpaw Formation. According to Obradovich and Cobban (1975), late Cretaceous extended from 94 to 64 million years ago.
4.2 Tertiary Period

During the Tertiary Period from 69 to 3 million years ago, the Outlook area presumably received nonmarine gravel, sand, silt, and clay from streams originating in the rapidly rising Cordillera to the west. These streams formed alluvial plains of chert and quartzite gravel and brown sand, silt, and clay, the remnants of which are called Swift Current Creek, Cypress Hills, and Wood Mountain formations (Fig. 2A). Most of these sediments were removed from the Outlook area by fluvial and glacial erosion. The chert and quartzite gravels in testhole 9 (Drawing 0101-001-03) were derived presumably from one of these formation by fluvial erosion.

4.3 Quaternary Period

The Quaternary Period covers the last two to three million years of the earth's history and is composed of the Pleistocene and Recent Epochs. In late Tertiary or early Quaternary, the previously mentioned alluvial plains in the Outlook area were dissected by the Tyner Valley (Drawing 0101-001-01). The valley containing the chert and quartzite gravels at testhole 9 (Drawings 0101-001-03) is believed to be a tributary of the Tyner Valley.
As the continental glaciers advanced southwestward through the Outlook area, they eroded the Upper Cretaceous and Tertiary deposits leaving only remnants of the latter and diverted the drainage from the northeast to the southwest. Weathered zones in the upper parts of the Lower, Middle, and Upper tills suggest that the Sutherland Group was deposited during three separate, distinct glaciations. Although only one till appears to be present in the Floral Formation of the study-area, two and possibly three are present in the Saskatoon area.

The Floral and Battleford formations are separated by another interglacial interval that commenced more than 38,000 years ago and ended about 20,000 years ago when the last glacier advance across the study-area.

During the last deglaciation, the ice retreat across the Outlook area between about 14,000 and 1200 years ago (Figs. 7,8,9). About 14,000 years ago (Fig. 7), the Outlook area started to appear from beneath the glacier. Lake Saskatchewan drained through the Whitebear, South Saskatchewan, and Thunder spillways into Lake Regina.

Between 14,000 and 12,500 years ago the Anerley Spillway drained water from Lake Saskatchewan into the South Saskatchewan Spillway which in turn drained into the
Figure 7. History of deglaciation about 14,000 years ago. From Christiansen (1979).
Figure 8. History of deglaciation about 12,500 years ago. From Christiansen (1979).
Figure 9. History of deglaciation about 12,000 years ago. From Christiansen (1979).
Qu'Appelle Spillway. The gravel deposits south of Coteau Bay, which were used during the construction of the Gardiner Dam, are believed to have formed at this time.

About 12,500 years ago (Fig. 8), Lake Saskatchewan drained through the South Saskatchewan Spillway into the Qu'Appelle Spillway and through the Blackstrap Spillway, glacial Last Mountain Lake, and the Last Mountain Spillway into the Qu'Appelle Spillway.

Between 12,500 and 12,000 years ago, the flow in the South Saskatchewan River valley was reversed. Instead of flowing southeastward as in Figure 8, it flowed northwestward into Lake Saskatchewan at Outlook (Fig. 9). It was at this time that the deltaic sands and silts were deposited in the vicinity of Outlook (Drawing 0101-001-06).

Between 12,000 and 11,500 years ago, Lake Saskatchewan receded from the Outlook area. Except for continued downcutting by the South Saskatchewan River in response to a lower base level of erosion as a result of glacier retreat, the effect of glaciation in the Outlook area was over.
The North Saskatchewan River and presumably the South Saskatchewan River began the process of aggradation about 11,000 years ago (Christiansen, 1983). Since that time the South and North Saskatchewan River valleys have received up to 120' of alluvial sands and silts.

After the drainage of Lake Saskatchewan, deltaic sands were reworked into parabolic dunes, which for the most part, are now stabilized. Such eolian activity placed a cover-sand over a soil developed on clays laid down in Lake Saskatchewan at testhole 20 (Drawing 0101-001-06). In addition to dunes, cliff-top loess was deposited adjacent to the South Saskatchewan River valley.

During the formation of the South Saskatchewan River valley, retrogressive landslides started to form when the bedrock clays were penetrated. Work on the Denholm landslide (Christiansen, 1983) would suggest that the landslides in the Outlook area may be still moving. Except for gullying, spring sapping, mass wastage, loessial activity, and some sedimentation in depressions, few changes have taken place in the landscape during the Recent Epoch.
5. SEEPAGE MODELS

5.1 Introduction

Seepage from canals may occur through bedrock sands, deltaic sands, intertill and intratill sands and gravel, and through joints.

5.2 Bedrock Sands

In the northern part of the Outlook area, sands of the Judith River Formation occur in the upper 20 feet. At testhole 17 (Drawing 0101-001-05), these sands were penetrated during the excavation of the canal. It is conceivable that sands of the ArdKenneth Member may be present near enough to the surface to also become a seepage path.

5.3 Deltaic Sands

Soils north of Outlook in the vicinity of testhole 19 (Drawing 0101-001-06) are developed in less than three feet of eolian silty sand overlying medium to very coarse grained deltaic sand. Because local relief is low,
infiltration of irrigation water causes the water table to rise sufficiently close to the surface in places to form saline soils.

5.4 Intertill and Intratill Sands and Gravels

Sands and gravels are known to occur between the Floral and Battleford tills and within the Floral Formation. Where such deposits of sands and gravels occur, continuity over extensive areas should be contemplated. Locally, within the Floral and Battleford formations, ice-thrust lenses of sands and gravels are also known to occur. Where such deposits of sands and gravels form seepage paths from the canal, leakage can be anticipated.

5.5 Joints

Joints occur in weathered tills of the Floral Formation and Sutherland Group and in the upper part of the Bearpaw Formation in testholes 16 and 21 (Drawing 0101-001-01). Whether these joints extend through the unoxidized tills and Bearpaw Formation is not known. It is known, however, that joints in the weathered zone are sufficiently open to receive precipitates of iron and manganese oxides and veinlets of gypsum. It is generally conceded that
vertical permeability is enhanced by joints, but there is less certainty about the effect of joints on horizontal permeability. If joints enhance horizontal permeability, they could be the most important conductor of seepage because of their almost continuous occurrence. Detailed geotechnical of hydrogeological studies, however, will be required to resolve this problem.

6. LITERATURE CITED

Appendix 1. Index of Geologic Logs.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FFIB J. D. Forsberg</td>
<td>NB-16-32-26-07-W3</td>
</tr>
<tr>
<td>2</td>
<td>FFIB Roy Lee</td>
<td>SE-04-07-27-07-W3</td>
</tr>
<tr>
<td>3</td>
<td>SWC Conquest WM1-84-RH-02</td>
<td>NW-06-04-28-08-W3</td>
</tr>
<tr>
<td>4</td>
<td>SWC Conquest WM1-84-RH-01</td>
<td>SW-10-17-28-08-W3</td>
</tr>
<tr>
<td>5</td>
<td>SWC Conquest WM1-84-RH-03</td>
<td>SE-12-20-28-08-W3</td>
</tr>
<tr>
<td>6</td>
<td>SWC Conquest WM1-84-RH-05</td>
<td>NB-01-02-29-09-W3</td>
</tr>
<tr>
<td>7</td>
<td>SSRIP Conquest No. 2</td>
<td>SW-03-18-30-09-W3</td>
</tr>
<tr>
<td>8</td>
<td>SRC Outbank</td>
<td>SE-01-06-27-06-W3</td>
</tr>
<tr>
<td>9</td>
<td>SWC Outlook M1-84-RH-04</td>
<td>NW-14-13-27-07-W3</td>
</tr>
<tr>
<td>10</td>
<td>SWC Outlook M1-84-RH-03</td>
<td>NW-04-02-28-07-W3</td>
</tr>
<tr>
<td>12</td>
<td>SWC Outlook M1-84-RH-01</td>
<td>SE-04-16-29-07-W3</td>
</tr>
<tr>
<td>13</td>
<td>SWC Outlook M1-84-RH-05</td>
<td>SE-09-29-28-07-W3</td>
</tr>
<tr>
<td>14</td>
<td>SWC Outlook M1-84-RH-06</td>
<td>NW-13-26-28-07-W3</td>
</tr>
<tr>
<td>15</td>
<td>Rankin Glenside</td>
<td>NW-10-17-29-06-W3</td>
</tr>
<tr>
<td>16</td>
<td>SWC Broderick SSEWS-84-RH-03</td>
<td>NW-13-07-30-05-W3</td>
</tr>
<tr>
<td>17</td>
<td>SWC Broderick SSEWS-84-RH-01</td>
<td>SW-01-19-30-05-W3</td>
</tr>
<tr>
<td>18</td>
<td>SWC Broderick SSEWS-84-RH-04</td>
<td>SW-02-31-30-04-W3</td>
</tr>
<tr>
<td>19</td>
<td>SWC Outlook SSRID-84-RH-02</td>
<td>NB-14-03-30-06-W3</td>
</tr>
<tr>
<td>20</td>
<td>SWC Outlook SSRID-84-RH-01</td>
<td>NW-13-06-30-07-W3</td>
</tr>
<tr>
<td>21</td>
<td>SWC Broderick SSEWS-84-RH-02</td>
<td>SW-04-17-30-05-W3</td>
</tr>
<tr>
<td>22</td>
<td>SWC Conquest WM1-84-RH-04</td>
<td>NB-12-16-28-08-W3</td>
</tr>
<tr>
<td>23</td>
<td>SSRIP Conquest No. 49</td>
<td>NW-15-12-30-09-W3</td>
</tr>
<tr>
<td>24</td>
<td>SDH Outlook</td>
<td>SW-03-16-29-08-W3</td>
</tr>
</tbody>
</table>
Appendix 2. Geological Logs.
ELECTRIC LOG

TEST DRILLING ASSISTANCE PROGRAM

SASKATCHEWAN DEPARTMENT OF AGRICULTURE

129 HAVEN STREET, REGINA, S4P 2P8

DRILLING CONTRACTOR - COMPANY NAME

<table>
<thead>
<tr>
<th>Contractor Name</th>
<th>Contractors License No.</th>
<th>Contractor's Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.A. Christiansen Consulting Ltd.</td>
<td>35000</td>
<td>129 HAVEN STREET, REGINA, S4P 2P8</td>
</tr>
</tbody>
</table>

Owners Name

<table>
<thead>
<tr>
<th>Owner's Name</th>
<th>Owner's Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Smith</td>
<td>Signature</td>
</tr>
</tbody>
</table>

Test Well: Municipal Area Location

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE4-7-27-7-W3</td>
<td>01/01/21</td>
<td>Test Well Location</td>
</tr>
</tbody>
</table>

Log Scales

<table>
<thead>
<tr>
<th>Depth</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>1700</td>
<td>1800</td>
</tr>
<tr>
<td>207</td>
<td>207</td>
</tr>
</tbody>
</table>

Logon Date: 01/01/21

Additional Notes:

- Single-point resistance
- Initial setup
- Final readings
<table>
<thead>
<tr>
<th>Layer</th>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 - 1</td>
<td>ARANU</td>
</tr>
<tr>
<td>2</td>
<td>1.1 - 2.4</td>
<td>TILL</td>
</tr>
<tr>
<td>3</td>
<td>2.5 - 3.8</td>
<td>TILL</td>
</tr>
<tr>
<td>4</td>
<td>3.9 - 4.2</td>
<td>Siltstone</td>
</tr>
<tr>
<td>5</td>
<td>4.3 - 5.6</td>
<td>Siltstone</td>
</tr>
<tr>
<td>6</td>
<td>5.7 - 6.1</td>
<td>SAND</td>
</tr>
<tr>
<td>7</td>
<td>6.2 - 7.5</td>
<td>SAND</td>
</tr>
<tr>
<td>8</td>
<td>7.6 - 9.0</td>
<td>SAND</td>
</tr>
<tr>
<td>9</td>
<td>9.1 - 10.4</td>
<td>WATER</td>
</tr>
</tbody>
</table>

Well Description:
- Screen 1, length 1 m
- Screen 2, length 1.5 m
- Screen 3, length 2 m
- Screen 4, length 2.5 m

Recommended Screen from 1.5 m
SWC 720/6 1984
CONQUEST WM1-84-RH-02
NW-06-C4-28-08-W3
13:355600E/5692200N
TESTHOLE

SP COND WLD 650 MGD/EQUIV/AC/FT AT 25°C
SP COND WATER 475 MGD/EQUIV/AC/FT AT 25°C
SP 10 MV R 10 OHMS

CUTTING SAMPLE DESCRIPTION:
0
TILL, SANDY, DL, CR, OR, LT, BK, GR
TILL, CALC., BK, UNNORMALIZED, SPT
TILL, SANDY, CALC., DL, BK, GR, LT, BR, STONE, WIRE
TILL, S., CALC., BK, GR, BK
SAND AND SILT, DL, GR
TILL, DL, CR, BK, GR
TILL, S., CALC., BK, GR
SAND (E-LOO)
SILT, SANDY, CALC., SAMP, LT, BR, BK, GR
CLAY, Silty, CALC., SAMP, LT, BR, BK, GR
SILT, S., CALC., SAMP, LT, BK, BR, BK, GR
SAND AND SILT, S., DL, CR, OR, LT, BK, BR, BK, GR
BENTONITE, RED, CALC., LT, OR, BK, BR, BK, GR, DL, GR
CLAY, MUD, DL

SASKATON GROUP

UPPER TILL

MIDDLE TILL

LOWER TILL

EMPRESS GROUP

BEARPAW FORMATION

CONTRACTOR
HAYTER DRILLING LTD.
DRIER
PARRY HAYTER
SEPTEMBER 6, 1984

E. A. Christiansen Consulting Ltd.
SWC 720/6 1984
CONQUEST WM1-84-RH-03
SE-12-20-28-08-W3
13:3539300E/5697200N
TESTHOLE

SURFACE ELEV. 1897 FT.
SURVEY
SP COND MUD 750 MICROSIEMENS/CM AT 25°C
SP COND WATER 400 MICROSIEMENS/CM AT 25°C
SP 10 MV R 10 OHMS

CUTTING SAMPLE DESCRIPTION
TILL, SANDY, CALC., GR., BR., SOFT
TILL, SL, CALC., GYP., DK, GR., BR., REL. BR.
TILL, SL, CALC., CALC., GR.
TILL, SANDY, ST, CALC., GR.
CLAY, TONCALC., GR.

SASKATOON GROUP
UPPER TILL
MIDDLE TILL
BEARPAW FORMATION

CONTRACTOR
KARTER DRILLING LTD.
DRILLER
PARTY KARTER
SEPTEMBER 7, 1984

E.A. Christiansen Consulting Ltd.
SWC 720/6 1984
CONQUEST WM1-84-RH-05
NE-01-02-29-09-W3
13,350,400E/570,1600N
TESTHOLE
851 R. AND 51 Y. OF DEC-35-28-0-47
SURFACE ELEV. 1885 FT
SURVEY
SP COND MUD 2250 microSiemens/cm AT 25°C
SP COND WATER 500 microSiemens/cm AT 25°C
SP 10 MV R 10 OHMS

SASKATOON GROUP

MIDDLE TILL

SUTHERLAND GROUP

LOWER TILL

BEARPAW FORMATION

CONTRACTOR
HAYTER DRILLING LTD.

DRILLER
MARTY HAYTER

SEPTEMBER 9, 1984

E. A. Christiansen Consulting Ltd.
SWC 720/7 1984
OUTLOOK M1-84-RH-02
SE-15-28-28-07-W3
13.566300E/5699000N
TESTHOLE

SURFACE ELEV. 1858 FT

SP COND MUD 325 MICROSIEMENS/CM AT 25°C
SP COND WATER 450 MICROSIEMENS/CM AT 25°C
SP 10 MV R 10 OHMS

CUTTING SAMPLING DESCRIPTION:

SASKATOON GROUP
EMPRESS GROUP
BEARPAW FORMATION
JUDITH RIVER FORMATION

CONTRACTOR
HAYTER DRILLING LTD.
DILLER
MARTY HAYTER
SEPTEMBER 25, 1984

E.A. Christiansen Consulting Ltd.
OUTLOOK M1-84-RH-05
SE.09-29-28-07-W3
13365000E/5698500N
TESTHOLE

SURFACE ELEV. 1827 FT

SP COND MUD 1000 MICROSIUDE/MC at 25°C
SP COND WATER 455 MICROSIUDE/MC at 25°C
SP 10 MV R 10 OHMS

SASKATOON GROUP

BEARPAW FORMATION

JUDITH RIVER FORMATION

CONTRACTOR
HAYTER DRILLING LTD.
DRILLER
HAYTER HAYTER
SEPTEMBER 24, 1984

E.A. Christiansen Consulting Ltd.
<table>
<thead>
<tr>
<th>RANKIN</th>
<th>720/7</th>
<th>1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEKESIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW</td>
<td>0</td>
<td>17.29</td>
</tr>
<tr>
<td>TESTHOLE WELL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANKIN DRILLING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLER: A. RANKIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURFACE ELEV.</td>
<td>1830 FT</td>
<td></td>
</tr>
<tr>
<td>CLEV FROM</td>
<td>Top only 60 CS</td>
<td></td>
</tr>
<tr>
<td>SF BOND MUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF CONC WATER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF 10 MV</td>
<td>0-10 OHMS</td>
<td></td>
</tr>
</tbody>
</table>

drawn by

E. A. Christiansen Consulting Ltd.
SWC 720/10 1984
BRODERICK
SW-01-19-30-05-W3
13:383100E/5715100N
SSEWS-84-RH-01

SURFACE ELEV. 1814 FT
SURVEY
SP COND MUD 975 MICROSIEMENS/cm AT 25°C
SP COND WATER 400 MICROSIEMENS/cm AT 25°C
SP 10 MV R 10 OHMS

SASKATOON GROUP

JUDITH RIVER FORMATION

LEA PARK FORMATION

CONTRACTOR
KAYTER DRILLING LTD.
DRILLER
MARTY KAYTER
SEPTEMBER 11, 1984

E.A. Christiansen Consulting Ltd.
SWC 720/10 1984
BRODERICK
SW-04-17-30-05-W3
13:38:330O'E/5713500N
SSEWS-84-RH-02

SURFACE ELEV. 1824 FT
SURVEY
SP COND MUD 1000 MICROSIEMENS/CM AT 20°C
SP COND WATER 450 MICROSIEMENS/CM AT 20°C
SP 10 MV R 10 OHMS

SASKATOON GROUP

BEARPAW FORMATION

JUDITH RIVER FORMATION

LEA PARK FORMATION

CONTRACTOR
HAYTER DRILLING LTD.
SKILLER
NORTH HAYTER
SEPTEMBER 22, 1984

C.A. Christiansen Consulting Ltd.
Appendix 3. Total Carbonate Analyses.

<table>
<thead>
<tr>
<th>Testhole</th>
<th>Depth (feet)</th>
<th>% Inorg. carbon</th>
<th>mL CO₂ /gram</th>
<th>Testhole</th>
<th>Depth (feet)</th>
<th>% Inorg. carbon</th>
<th>mL CO₂ /gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM1-84-RH-01</td>
<td>5-10</td>
<td>0.85</td>
<td>15.7</td>
<td>WM1-84-RH-03</td>
<td>135-140</td>
<td>0.79</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>0.64</td>
<td>11.8</td>
<td></td>
<td>145-150</td>
<td>0.88</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>0.80</td>
<td>14.8</td>
<td></td>
<td>155-160</td>
<td>0.70</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>35-40</td>
<td>1.00</td>
<td>18.5</td>
<td></td>
<td>155-170</td>
<td>0.78</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>0.91</td>
<td>16.8</td>
<td></td>
<td>175-180</td>
<td>1.27</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>55-60</td>
<td>1.12</td>
<td>20.7</td>
<td>WM1-84-RH-05</td>
<td>0-5</td>
<td>1.43</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>65-70</td>
<td>0.97</td>
<td>17.9</td>
<td></td>
<td>5-10</td>
<td>1.36</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>75-80</td>
<td>1.10</td>
<td>20.4</td>
<td></td>
<td>10-15</td>
<td>1.25</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>85-90</td>
<td>0.98</td>
<td>18.1</td>
<td></td>
<td>15-20</td>
<td>0.96</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>95-100</td>
<td>0.90</td>
<td>16.7</td>
<td></td>
<td>20-25</td>
<td>0.94</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>105-110</td>
<td>0.83</td>
<td>15.4</td>
<td></td>
<td>25-30</td>
<td>0.80</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>115-120</td>
<td>0.84</td>
<td>15.5</td>
<td></td>
<td>35-40</td>
<td>0.77</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>125-130</td>
<td>0.89</td>
<td>16.5</td>
<td></td>
<td>50-55</td>
<td>0.88</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>135-140</td>
<td>0.91</td>
<td>16.8</td>
<td></td>
<td>60-65</td>
<td>0.81</td>
<td>15.0</td>
</tr>
<tr>
<td>WM1-84-RH-02</td>
<td>5-10</td>
<td>0.99</td>
<td>18.3</td>
<td>M1-84-RH-01</td>
<td>10-15</td>
<td>1.25</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>0.88</td>
<td>16.3</td>
<td></td>
<td>15-20</td>
<td>0.83</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>0.83</td>
<td>15.4</td>
<td></td>
<td>20-25</td>
<td>0.83</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>20-25</td>
<td>0.71</td>
<td>13.7</td>
<td></td>
<td>25-30</td>
<td>0.80</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>0.65</td>
<td>12.0</td>
<td></td>
<td>30-35</td>
<td>0.40</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>35-40</td>
<td>0.75</td>
<td>13.9</td>
<td></td>
<td>100-105</td>
<td>0.68</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>1.05</td>
<td>19.4</td>
<td></td>
<td>110-115</td>
<td>0.66</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>55-60</td>
<td>1.08</td>
<td>20.0</td>
<td></td>
<td>120-125</td>
<td>0.14</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>65-70</td>
<td>1.04</td>
<td>19.2</td>
<td>M1-84-RH-02</td>
<td>10-15</td>
<td>1.01</td>
<td>18.7</td>
</tr>
<tr>
<td></td>
<td>75-80</td>
<td>1.02</td>
<td>18.9</td>
<td></td>
<td>15-20</td>
<td>1.20</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>85-90</td>
<td>0.94</td>
<td>17.4</td>
<td></td>
<td>20-25</td>
<td>1.28</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>95-100</td>
<td>1.08</td>
<td>20.0</td>
<td>M1-84-RH-03</td>
<td>5-10</td>
<td>1.36</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>105-110</td>
<td>0.97</td>
<td>17.9</td>
<td></td>
<td>5-15</td>
<td>1.05</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>115-120</td>
<td>0.90</td>
<td>16.7</td>
<td></td>
<td>15-20</td>
<td>0.94</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>125-130</td>
<td>0.85</td>
<td>15.7</td>
<td></td>
<td>20-25</td>
<td>0.96</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>135-140</td>
<td>0.85</td>
<td>15.7</td>
<td></td>
<td>25-30</td>
<td>0.96</td>
<td>17.8</td>
</tr>
</tbody>
</table>

E.A. Christiansen Consulting Ltd.
<table>
<thead>
<tr>
<th>Testhole</th>
<th>Depth feet</th>
<th>% inorg. carbon /gram</th>
<th>mL CO₂</th>
<th>Testhole</th>
<th>Depth feet</th>
<th>% inorg. carbon /gram</th>
<th>mL CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-84-RH-03</td>
<td>145-150</td>
<td>0.80</td>
<td>14.8</td>
<td>SSRIP-84-RH-01</td>
<td>20-25</td>
<td>1.40</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td>155-160</td>
<td>0.94</td>
<td>17.4</td>
<td></td>
<td>25-30</td>
<td>1.44</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30-35</td>
<td>1.65</td>
<td>30.5</td>
</tr>
<tr>
<td>M1-84-RH-04</td>
<td>5-10</td>
<td>1.05</td>
<td>19.4</td>
<td></td>
<td>35-40</td>
<td>1.55</td>
<td>28.7</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>0.93</td>
<td>17.2</td>
<td></td>
<td>45-50</td>
<td>1.60</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>0.95</td>
<td>17.6</td>
<td></td>
<td>55-60</td>
<td>1.49</td>
<td>27.6</td>
</tr>
<tr>
<td></td>
<td>20-25</td>
<td>0.57</td>
<td>10.5</td>
<td></td>
<td>65-70</td>
<td>1.52</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>0.68</td>
<td>12.6</td>
<td></td>
<td>75-80</td>
<td>1.59</td>
<td>29.4</td>
</tr>
<tr>
<td></td>
<td>35-40</td>
<td>0.93</td>
<td>17.2</td>
<td>SSRIP-84-RH-02</td>
<td>60-65</td>
<td>0.98</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>1.04</td>
<td>19.2</td>
<td></td>
<td>65-70</td>
<td>0.75</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>55-60</td>
<td>1.12</td>
<td>20.7</td>
<td></td>
<td>70-75</td>
<td>0.77</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>65-70</td>
<td>1.42</td>
<td>26.3</td>
<td></td>
<td>75-80</td>
<td>0.90</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>75-80</td>
<td>0.87</td>
<td>16.1</td>
<td></td>
<td>80-85</td>
<td>0.82</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>85-90</td>
<td>0.90</td>
<td>16.7</td>
<td></td>
<td>85-90</td>
<td>0.81</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>95-100</td>
<td>0.90</td>
<td>16.7</td>
<td></td>
<td>95-100</td>
<td>0.93</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td>105-110</td>
<td>1.17</td>
<td>21.6</td>
<td></td>
<td>105-110</td>
<td>0.76</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>115-120</td>
<td>0.79</td>
<td>14.6</td>
<td></td>
<td>115-120</td>
<td>0.94</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>125-130</td>
<td>0.67</td>
<td>12.4</td>
<td></td>
<td>125-130</td>
<td>0.92</td>
<td>17.0</td>
</tr>
<tr>
<td>M1-84-RH-05</td>
<td>5-10</td>
<td>1.48</td>
<td>27.4</td>
<td></td>
<td>135-140</td>
<td>0.88</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>1.01</td>
<td>18.7</td>
<td></td>
<td>145-150</td>
<td>0.87</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>0.90</td>
<td>16.7</td>
<td></td>
<td>155-160</td>
<td>0.83</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>20-25</td>
<td>1.08</td>
<td>20.0</td>
<td></td>
<td>170-175</td>
<td>0.76</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>0.30</td>
<td>5.6</td>
<td></td>
<td>175-180</td>
<td>0.83</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>30-35</td>
<td>0.85</td>
<td>15.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1-84-RH-06</td>
<td>10-15</td>
<td>1.08</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>1.13</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSEWS-84-RH-02</td>
<td>0-5</td>
<td>0.74</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-10</td>
<td>0.97</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>0.79</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>0.72</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSEWS-84-RH-03</td>
<td>0-5</td>
<td>0.58</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>0.98</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4. Mechanical Analyses.

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Depth feet</th>
<th>Carbonate + Organic free</th>
<th>Original Sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMI-84-AH-01</td>
<td>7</td>
<td>54.3</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>38.6</td>
<td>31.1</td>
</tr>
<tr>
<td>WMI-84-AH-02</td>
<td>3</td>
<td>51.0</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>38.5</td>
<td>26.5</td>
</tr>
<tr>
<td>WMI-84-AH-03</td>
<td>5-7</td>
<td>52.3</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>41.6</td>
<td>27.1</td>
</tr>
<tr>
<td>WMI-84-AH-04</td>
<td>9</td>
<td>46.2</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>63.5</td>
<td>22.6</td>
</tr>
<tr>
<td>WMI-84-RH-02</td>
<td>40-45</td>
<td>36.3</td>
<td>28.5</td>
</tr>
<tr>
<td>WMI-84-RH-05</td>
<td>80-85</td>
<td>32.0</td>
<td>34.0</td>
</tr>
</tbody>
</table>